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Abstract

A bounded stochastic optimal semi-active control strategy for magneto-rheological/electro-rheological (MR/ER)

dampers is developed from the previously proposed strategy by considering the constraint of semi-active control forces.

The control force is separated into a semi-active part and passive part incorporated in the uncontrolled system. The control

system is converted into an averaged control system for energy processes by using the stochastic averaging method. The

bounded and dynamic constraint of semi-active control forces and a performance index are formulated to constitute a

bounded stochastic optimal semi-active control problem. Then the dynamical programming equation is established by

applying the stochastic dynamical programming principle to the control problem. The bounded optimal semi-active

control forces are obtained from solving this equation based on the variation method. A bounded optimal active control

law given is implementable by MR/ER dampers. Finally, an example of controlled and stochastically excited nonlinear

system is studied to illustrate the efficiency and chattering attenuation of the developed bounded control.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration control of structural systems using semi-active smart devices has been an active research
subject in recent years [1]. Magneto-rheological (MR) and electro-rheological (ER) fluid dampers as semi-
active smart control devices have attractive features such as mechanical simplicity, reliability, especially small
power source requirement and the capacity to provide large controllable damping forces. Extensive theoretical
and experimental researches have been done on the dynamic behavior and potential control application of
MR/ER dampers. The control efficacy of an MR/ER damper depends much on the control strategy used.
Several semi-active control strategies have been proposed and some of them have been compared with each
other through a numerical study [2]. The clipping treatment is incorporated in those control strategies to
ensure the commanded control forces implementable, which could reduce the control efficacy. The dynamic
loading such as wind and earthquake ground motion acting on structural systems is random in nature. A semi-
active stochastic optimal control strategy for MR/ER dampers without clipping has been proposed recently
[3,4]. In those studies, control devices are assumed to have sufficient capacity of large control forces. However,
the control force produced by a control device, for example, MR/ER damper is always bounded. The bounded
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.03.003

ing author.

ess: yingzg@zju.edu.cn (Z.G. Ying).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.03.003
mailto:yingzg@zju.edu.cn


ARTICLE IN PRESS
Z.G. Ying et al. / Journal of Sound and Vibration 304 (2007) 948–956 949
implementation of an unbounded optimal control force will reduce the control efficiency due to the much
energy consumption. The stochastic optimal bounded active controls have been proposed [5,6], which belong
to the catalog of bang–bang control. The bang–bang control force jumps frequently between maximum and
minimum values so that the control efficiency is not high. The discontinuous control force with high-frequency
commutation can cause strong chattering and then deteriorate the control performance [7].

In the present communication, a bounded stochastic optimal semi-active control strategy is developed from
the previous work by considering the bounded and dynamic constraint of semi-active control forces. The
bounded optimal semi-active control law is determined and applied to a nonlinear system to show the control
efficacy and chattering attenuation.

2. Bounded optimal semi-active control problem

Consider a semi-actively controlled, stochastically excited and dissipated Hamiltonian system, as many
engineering structures are modeled in vibration control study. The differential equations of motion of the
system is

_Qi ¼
qH

qPi

; _Pi ¼ �
qH

qQi

� cij

qH

qPj

þ f ikW kðtÞ þ birur,

i; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;m; r ¼ 1; 2; . . . ; nu, (1)

where Qi and Pi are generalized displacement and momentum, respectively, H ¼ H(Q, P) is the Hamiltonian
generally representing total energy of the system, cij ¼ cij(Q, P) is damping coefficient, fik(Q, P) is excitation
amplitude, Wk(t) (k ¼ 1, 2,y,m) are random processes with zero mean and correlation function Rkk0 ðtÞ;
Q ¼ [Q1, Q2,y,Qn]

T, P ¼ [P1, P2,y,Pn]
T, ur represents the semi-active control force, and bir is control

placement coefficient. The control force produced by an MR/ER damper is bounded so that jurjpu0br in terms
of symmetric bounded force, where u0br is positive constant.

The semi-active control force ur can be separated into passive and semi-active components as ur ¼ upr+usr.
The passive control force component upr is combined with the uncontrolled system to form a passive control
system. The stochastic averaging method [8] can be first applied to the system to yield Itô stochastic
differential equations. For instance, in the case of integrable Hamiltonian system, the averaged Itô equations
are derived as follows [3]:

dHi ¼ miðHÞ þ
qHi

qPj

bjrusr

� �� �
dtþ sikðHÞdBkðtÞ,

i; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;m; r ¼ 1; 2; . . . ; nu, (2)

where Hi (i ¼ 1, 2,y,n) are independent integrals of motion generally representing modal vibration energies,
H ¼ [H1, H2,y,Hn]

T, / S denotes the averaging operation, Bk(t) (k ¼ 1, 2,y,m) are independent unit Wiener
processes, mi(H) and sik(H) are drift and diffusion coefficients, respectively. The semi-active control force is
constrained, for instance, by the MR/ER damper as

jusrjpubr,

usr ¼ �Fr sgn bir

qH

qPi

� �
; F rX0, (3)

according to the Bingham model, where ubr is the control force bound and Fr is the damper yielding force
dependent on applied voltage. The control system (1) is converted into averaged control system (2) so that the
response control of (1) can be performed by the energy control of (2) and the dimension of control system is
reduced from 2n to n.

The stochastic optimal control of system (2) with constraint (3) is to minimize a performance index such as

J ¼ lim
tf!1

1

tf

Z tf

0

LðHðtÞ; usðtÞÞdt, (4)
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in the case of infinite time-interval ergodic control, where L(H, us) is a continuous differential convex function
and us ¼ ½us1; us2; . . . ; usnu

�T. System (2), performance index (4) and constraint (3) constitute a bounded
stochastic optimal semi-active control problem.
3. Bounded optimal semi-active control law

By applying the stochastic dynamical programming principle [9] to system (2) and performance index (4),
the following dynamical programming equation is derived:

l ¼ min
us2U

LðH; usÞ þ miðHÞ þ bjrusr

qHi

qPj

� �� �
qV

qHi

�

þ
1

2
sikðHÞsjkðHÞ

q2V
qHiqHj

	
, ð5Þ

where V is called the value function, l the constant and U the domain of semi-active control force usr. Based
on the variation method, minimizing the right-hand side of Eq. (5) yields

q
qur1

LðH; usÞ þ bjrusr

qHi

qPj

� �
qV

qHi

� �
¼ 0; dur1a0,

r; r1 ¼ 1; 2; . . . ; nu; i; j ¼ 1; 2; . . . ; n, (6)

while noting constraint (3). The bounded optimal semi-active control law is determined as follows: when
|usr|oubr and usr sgn(birqH/qPi)o0, usr is obtained by solving Eq. (6); when |usr|Xubr and usrsgn(birqH/qPi)o0,
|usr| ¼ ubr; when usr sgn(birqH/qPi)X0, usr ¼ 0. Obviously, the longer the time for |usr|pubr and usr sgn(birqH/
qPi) p0 is, the better the control effectiveness using MR/ER dampers is.

Let LðH; usÞ ¼ gðHÞ þ huTs Rusi, in which g(H)X0 and R is a positive-definite symmetric matrix. The
bounded optimal semi-active control forces obtained are

u�sr ¼

�Fr; jFrjoubr;F r sgnðbir
_QiÞ40;

�ubr sgnðFrÞ; jFrjXubr;F r sgnðbir
_QiÞ40

0; Fr sgnðbir
_QiÞp0;

8><
>: ,

Fr ¼
1

2
R�1rr1

bjr1

qHi

qPj

qV

qHi

; r ¼ 1; 2; . . . ; nu. (7)

In the case of Hi ¼ Hi(Qi, Pi) (i ¼ 1, 2,y,n), by taking R as a diagonal matrix and g(H) such that qV/
qH1 ¼ qV/qH2 ¼? ¼ qV/qHnX0, there exists

Fr sgn bir

qH

qPi

� �
¼

1

2Rrr

bjr
_Qj

qV

qHj

sgnðbir
_QiÞ ¼

1

2Rrr

qV

qH1
jbir

_QijX0, (8)

which implies that the second equation of constraint (3) holds all the time. Thus, semi-active MR/ER dampers
can perform the active optimal control. The bounded optimal semi-active control forces (7) become

u�sr ¼
�Fr; jF rjoubr;

�ubr sgnðF rÞ; jF rjXubr;

(

Fr ¼
1

2Rrr

qV

qH1
bir
_Qi. (9)

The value function V can be obtained by substituting the bounded optimal semi-active control forces (7) or
(9) into dynamical programming Eq. (5) and solving this equation.
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4. Bounded stochastic optimal semi-active control of a nonlinear system

To illustrate the application and efficacy of the bounded stochastic optimal semi-active control strategy,
consider the following controlled and stochastically excited nonlinear system, which can model many
structural vibrations such as the large-amplitude vibration of an upside-down pendulum subjected to
horizontal support motion:

€X þ c0 _X þ aX þ bX 3 ¼W ðtÞ þ u, (10)

where a, b and c0 are the constants, W(t) the Gaussian white noise with intensity 2D and u the control force
produced by an MR/ER damper. The passive control force component of the damper, up ¼ c1 _X , is combined
with the damping force of the uncontrolled system, c0 _X , to form the damping force of passively controlled
system, c _X . Let X ¼ Q and _X ¼ P. Eq. (10) is rewritten as

_Q ¼ P; _P ¼ �aQ� bQ3 � cPþ us þW ðtÞ. (11)

The semi-active control force constraint is

jusjpub; us ¼ �F sgnð _QÞ; FX0, (12)

where ub is the semi-active control force bound and F the damper yielding force. Applying the stochastic
averaging method to system (11) yields the averaged Itô equation

dH ¼ mðHÞ þ
qH

qP
us

� �� �
dtþ sðHÞdBðtÞ, (13)

where B(t) is the unit Wiener process

H ¼
1

2
P2 þ aQ2 þ

1

2
bQ4

� �
; mðHÞ ¼ D� cGðHÞ; s2ðHÞ ¼ 2DGðHÞ,

GðHÞ ¼
2

TðHÞ

Z A

�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � aq2 � bq4=2

q
dq,

TðHÞ ¼ 2

Z A

�A

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � aq2 � bq4=2

p ,

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ða2 þ 4bHÞ1=2 � a�=b

q
. ð14Þ

For the infinite time-interval ergodic control, take the performance index (4) with

LðH; usÞ ¼ gðHÞ þ hRu2
s i; gðHÞ ¼ s0 þ s1H þ s2H

2 þ s3H3, (15)

where R40, s0, s1, s2 and s3 are constants. Then the bounded optimal semi-active control force (7) is reduced
to

u�s ¼

�
1

2R

dV

dH
_X ;

1

2R

dV

dH
_X

����
����oub;

dV

dH
40;

�ub sgnð _X Þ;
1

2R

dV

dH
_X

����
����Xub;

dV

dH
40;

0;
dV

dH
p0:

8>>>>>>><
>>>>>>>:

(16)

Note that G(H) in Eq. (14) is the rapidly increasing function of H. It is always possible to select
s0, s1, s2, s3, R and l so that dV/dHX0. In this case, the bounded optimal semi-active control
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force (16) is simplified into

u�s ¼

�
1

2R

dV

dH
_X ;

1

2R

dV

dH
_X

����
����oub;

�ub sgnð _X Þ;
1

2R

dV

dH
_X

����
����Xub:

8>>><
>>>:

(17)

The dV/dH is obtained by solving the following equation:

1

2
s2ðHÞ

d2V

dH2
þmðHÞ

dV

dH
þmuðHÞ þ gðHÞ ¼ l, (18)

where

muðHÞ ¼ Ru2
b

T1ðHÞ

TðHÞ
� 4ub

xcrðHÞ

TðHÞ

dV

dH
�

1

4R
½GðHÞ � G1ðHÞ�

dV

dH

� �2

,

T1ðHÞ ¼ 2

Z xcr

�xcr

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � aq2 � bq4=2

p ,

G1ðHÞ ¼
2

TðHÞ

Z xcr

�xcr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � aq2 � bq4=2

q
dq,

xcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ða2 þ 2bHð2H � _x2

crÞÞ
1=2
� a�=b

q
,

l ¼ s0 þD
dV

dH

����
H¼0

. ð19Þ

To evaluate the efficacy of the bounded stochastic optimal semi-active control (17), substituting u�s (17) into
Eq. (13) yields

dH ¼ m̄ðHÞdtþ sðHÞdBðtÞ,

m̄ðHÞ ¼ mðHÞ � 4ub

xcrðHÞ

TðHÞ
�

1

2R
½GðHÞ � G1ðHÞ�

dV

dH
. (20)

A stationary probability density solution to the Fokker–Planck–Kolmogorov equation associated with Itô
equation (20) can be expressed as

psðHÞ ¼ Cs exp �

Z H

0

�2m̄ðyÞ þ ds2ðyÞ=dy

s2ðyÞ
dy

� 	
, (21)

where Cs is a normalization constant. The response of the semi-actively controlled system can be predicted by
using Eq. (21). The mean system energy and the mean-square bounded optimal semi-active control force are,
respectively,

E½Hs� ¼

Z 1
0

HpsðHÞdH, (22)

E½u�2s � ¼

Z 1
0

psðHÞdH u2
b

T1ðHÞ

TðHÞ
þ

1

4R2
½GðHÞ � G1ðHÞ�

dV

dH

� �2
( )

, (23)
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where E[ � ] denotes the expectation operation. The mean energy of the corresponding passively controlled
system, E[Hp], can be obtained in the same way by eliminating the u�s -caused terms. Then the control
effectiveness and efficiency of the bounded stochastic optimal semi-active control strategy can be measured by
the following performance criteria:

Ks ¼
E½Hp� � E½Hs�

E½Hp�
� 100%; ms ¼

Ks

E½u�2s �=ð2DÞ
. (24)

The criterion Ks represents the percentage reduction in mean system energies of the bounded-optimal-semi-
actively controlled system to passively controlled system. The criterion ms represents the relative reduction per
unit of the normalized mean-square bounded optimal semi-active control force. The higher Ks and ms indicate,
respectively, the better control effectiveness and control efficiency.

Since the comparison between the stochastic optimal semi-active control strategy and LQG control strategy
has been studied in Ref. [3], the present study focuses mainly on the developed bounded stochastic optimal
semi-active control strategy affected by the control force bound and compared with the bang–bang semi-active
control strategy. Numerical results are obtained for system (10) with the following parameter values: a ¼ 1,
b ¼ 0.2, c ¼ 0.2, D ¼ 0.3, ub ¼ 1, R ¼ 0.6, s1 ¼ s3 ¼ 0, s2 ¼ 1.5, dV(0)/dH ¼ 2.5 unless otherwise mentioned.
Figs. 1, 3 and 5 show that the control effectiveness of the bounded stochastic optimal semi-active
control strategy (Ks) and bang–bang semi-active control strategy (Kb) for various control force bounds (ub),
excitation intensities (D) and nonlinear stiffness coefficients (b), respectively. The effectiveness of the bounded
stochastic optimal semi-active control is close to that of the bang–bang semi-active control. However,
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Fig. 1. Control effectiveness versus control force bound.
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Fig. 3. Control effectiveness versus excitation intensity.
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as shown in Figs. 2, 4 and 6, the control efficiency of the bounded stochastic optimal semi-active control
strategy (ms) is much higher than that of the bang–bang semi-active control strategy (mb) for various control
force bounds, excitation intensities and nonlinear stiffness coefficients. Also, the maximum control efficiency
of the bounded optimal semi-active control strategy can be observed for a certain control force bound. Thus,
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Fig. 7. A bounded stochastic optimal semi-active control force.
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Fig. 8. A bang–bang semi-active control force.
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the bounded stochastic optimal semi-active control can achieve the control effectiveness close to the
bang–bang semi-active control under less energy consumption due to control force. Samples of the bounded
optimal semi-active control force (u�s ) and bang–bang semi-active control force ðub

s Þ in a certain time interval
are given in Figs. 7 and 8, respectively. It is seen that the bang–bang semi-active control force always jumps
between maximum and minimum values while the bounded optimal semi-active control force does not so.
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Fig. 9. Power spectral density (PSD) of acceleration response of the semi-actively bang–bang controlled (BBC) and bounded-optimal

controlled (BOC) systems.
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In this sense, the bounded optimal semi-active control force is more smooth than the bang–bang semi-active
control force. Fig. 9 illustrates the power spectral densities of acceleration response under the bounded
stochastic optimal semi-active control and bang–bang semi-active control. The high-frequency components of
the acceleration response of the bounded-optimal-semi-actively controlled system are less than those of the
bang–bang-semi-actively controlled system. Thus, the bounded stochastic optimal semi-active control
attenuates the chattering by comparing with the bang–bang semi-active control.
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